title: "ServiceAI Platform Code Documentation" project: "ServiceAI Platform" module: "Core AI Engine" version: "1.0.0" author: "ServiceAI Development Team" last_updated: "2024-03-15" status: "Stable"
ServiceAI Core AI Engine Documentation
Overview
The ServiceAI Core AI Engine is the central component of the ServiceAI Platform, responsible for natural language processing, intent recognition, and automated response generation. This documentation provides detailed information about the implementation, architecture, and usage of the Core AI Engine.
Table of Contents
Architecture
High-Level Design
The Core AI Engine follows a modular architecture with the following key components:
graph TD A[Input Processor] --> B[NLP Engine] B --> C[Intent Classifier] C --> D[Response Generator] D --> E[Output Formatter] B --> F[Entity Extractor] F --> C
Key Components
-
Input Processor
- Handles incoming requests
- Validates input format
- Preprocesses text data
-
NLP Engine
- Tokenization
- Part-of-speech tagging
- Dependency parsing
-
Intent Classifier
- Intent recognition
- Confidence scoring
- Context management
-
Response Generator
- Template selection
- Dynamic content insertion
- Response optimization
Components
Input Processor
Class Definition
class InputProcessor: """ Handles the processing and validation of incoming requests. Attributes: supported_languages (List[str]): List of supported language codes max_input_length (int): Maximum allowed input length Methods: validate_input(text: str) -> bool preprocess_text(text: str) -> str detect_language(text: str) -> str """ def __init__(self, config: Dict[str, Any]): """ Initialize the InputProcessor. Args: config: Configuration dictionary containing: - supported_languages: List of supported language codes - max_input_length: Maximum allowed input length - preprocessing_rules: Custom preprocessing rules """ self.supported_languages = config['supported_languages'] self.max_input_length = config['max_input_length'] self._preprocessing_rules = config['preprocessing_rules'] def validate_input(self, text: str) -> bool: """ Validate the input text. Args: text: Input text to validate Returns: bool: True if input is valid, False otherwise Raises: ValueError: If input is empty or exceeds max length """ if not text: raise ValueError("Input text cannot be empty") if len(text) > self.max_input_length: raise ValueError(f"Input text exceeds maximum length of {self.max_input_length}") return True
Usage Example
# Initialize processor config = { 'supported_languages': ['en', 'es', 'fr'], 'max_input_length': 1000, 'preprocessing_rules': {} } processor = InputProcessor(config) # Process input try: text = "Hello, I need help with my account" if processor.validate_input(text): processed_text = processor.preprocess_text(text) language = processor.detect_language(text) except ValueError as e: print(f"Error processing input: {e}")
NLP Engine
Class Definition
class NLPEngine: """ Natural Language Processing engine for text analysis. Attributes: model (Model): Loaded NLP model tokenizer (Tokenizer): Text tokenizer Methods: tokenize(text: str) -> List[str] pos_tag(tokens: List[str]) -> List[Tuple[str, str]] parse_dependencies(text: str) -> Dict[str, Any] """ def __init__(self, model_path: str): """ Initialize the NLP Engine. Args: model_path: Path to the pre-trained model """ self.model = self._load_model(model_path) self.tokenizer = self.model.get_tokenizer() def tokenize(self, text: str) -> List[str]: """ Tokenize input text. Args: text: Input text to tokenize Returns: List of tokens """ return self.tokenizer.tokenize(text)
Implementation
Core Classes
ServiceAI
class ServiceAI: """ Main class for the ServiceAI Core Engine. Attributes: input_processor (InputProcessor): Input processing component nlp_engine (NLPEngine): NLP processing component intent_classifier (IntentClassifier): Intent classification component response_generator (ResponseGenerator): Response generation component Methods: process_request(text: str) -> Dict[str, Any] train(data: List[Dict[str, Any]]) -> None evaluate(test_data: List[Dict[str, Any]]) -> Dict[str, float] """ def __init__(self, config: Dict[str, Any]): """ Initialize the ServiceAI engine. Args: config: Configuration dictionary containing component settings """ self.input_processor = InputProcessor(config['input_processor']) self.nlp_engine = NLPEngine(config['nlp_engine']) self.intent_classifier = IntentClassifier(config['intent_classifier']) self.response_generator = ResponseGenerator(config['response_generator']) def process_request(self, text: str) -> Dict[str, Any]: """ Process an incoming request. Args: text: Input text to process Returns: Dictionary containing: - intent: Detected intent - confidence: Confidence score - response: Generated response - metadata: Additional processing information """ # Validate and preprocess input self.input_processor.validate_input(text) processed_text = self.input_processor.preprocess_text(text) # Perform NLP analysis tokens = self.nlp_engine.tokenize(processed_text) pos_tags = self.nlp_engine.pos_tag(tokens) # Classify intent intent_result = self.intent_classifier.classify(processed_text) # Generate response response = self.response_generator.generate( intent_result['intent'], intent_result['entities'] ) return { 'intent': intent_result['intent'], 'confidence': intent_result['confidence'], 'response': response, 'metadata': { 'tokens': tokens, 'pos_tags': pos_tags, 'processing_time': time.time() } }
Configuration
Default Configuration
DEFAULT_CONFIG = { 'input_processor': { 'supported_languages': ['en', 'es', 'fr'], 'max_input_length': 1000, 'preprocessing_rules': { 'lowercase': True, 'remove_punctuation': True, 'normalize_whitespace': True } }, 'nlp_engine': { 'model_path': 'models/nlp/base', 'use_gpu': True, 'batch_size': 32 }, 'intent_classifier': { 'model_type': 'transformer', 'confidence_threshold': 0.85, 'max_context_length': 5 }, 'response_generator': { 'template_path': 'templates/responses', 'use_dynamic_templates': True, 'max_response_length': 500 } }
API Reference
Public Methods
process_request
Process an incoming customer request.
def process_request(text: str) -> Dict[str, Any]: """ Process a customer request and generate a response. Args: text: Input text from the customer Returns: Dictionary containing: - intent: Detected intent - confidence: Confidence score - response: Generated response - metadata: Processing information Raises: ValueError: If input is invalid ProcessingError: If processing fails """
train
Train the AI engine on new data.
def train(data: List[Dict[str, Any]]) -> None: """ Train the AI engine on new data. Args: data: List of training examples, each containing: - text: Input text - intent: Correct intent - entities: Named entities - response: Expected response Raises: TrainingError: If training fails """
Examples
Basic Usage
from serviceai import ServiceAI # Initialize the engine config = DEFAULT_CONFIG engine = ServiceAI(config) # Process a request request = "I need to reset my password" result = engine.process_request(request) print(f"Intent: {result['intent']}") print(f"Confidence: {result['confidence']}") print(f"Response: {result['response']}")
Custom Configuration
# Custom configuration custom_config = { 'input_processor': { 'supported_languages': ['en'], 'max_input_length': 500 }, 'intent_classifier': { 'confidence_threshold': 0.9 } } # Merge with default config config = {**DEFAULT_CONFIG, **custom_config} engine = ServiceAI(config)
Testing
Unit Tests
import unittest class TestServiceAI(unittest.TestCase): def setUp(self): self.engine = ServiceAI(DEFAULT_CONFIG) def test_input_validation(self): with self.assertRaises(ValueError): self.engine.process_request("") def test_intent_classification(self): result = self.engine.process_request("Reset password") self.assertEqual(result['intent'], 'password_reset') self.assertGreater(result['confidence'], 0.85)
Integration Tests
def test_end_to_end(): engine = ServiceAI(DEFAULT_CONFIG) # Test basic flow request = "I need to reset my password" result = engine.process_request(request) assert result['intent'] == 'password_reset' assert 'response' in result assert len(result['metadata']['tokens']) > 0 # Test error handling with pytest.raises(ValueError): engine.process_request("" * 2000) # Exceeds max length
Dependencies
Required Packages
[dependencies] numpy = "^1.21.0" torch = "^1.9.0" transformers = "^4.5.0" spacy = "^3.1.0" pydantic = "^1.8.0" [dev-dependencies] pytest = "^6.2.0" black = "^21.5b2" mypy = "^0.910"
System Requirements
- Python 3.8+
- CUDA 11.0+ (for GPU support)
- 8GB RAM minimum
- 2GB disk space
Contributing
Development Setup
-
Clone the repository
git clone https://github.com/serviceai/core-engine.git cd core-engine
-
Create virtual environment
python -m venv venv source venv/bin/activate # Linux/Mac venv\Scripts\activate # Windows
-
Install dependencies
pip install -r requirements.txt pip install -r requirements-dev.txt
Code Style
- Follow PEP 8 guidelines
- Use type hints
- Document all public methods
- Maintain test coverage above 90%
Pull Request Process
- Create feature branch
- Make changes
- Run tests and linting
- Submit PR with description
- Address review comments
Last Updated: March 15, 2024 Version: 1.0.0
Template Info
Category: Technical
Type: Code Documentation
Last Updated: March 15, 2024
Features
- Markdown format
- Code snippets support
- API documentation
- Architecture diagrams
Related Templates
Document public interfaces thoroughly
Include code examples for common use cases
Add diagrams for complex architectures